Climate Change & Sea Level Rise

Robert Scarborough, Ph.D.

DNERR Research Coordinator
Delaware Coastal Programs, Environmental Scientist

Definitions

- Climate Change: any significant change in measures of climate (such as temperature, precipitation, or wind) lasting for an extended period (decades or longer).
- Global Warming: an average increase in the temperature of the atmosphere near the Earth's surface, which can contribute to changes in global climate patterns. It can occur from a variety of causes, both natural and human.

Consequences of Climate Change (IPCC, 2007)

Precipitation

- ✓ An increase average annual precipitation, will vary by region.
- ✓ An increase in the intensity of precipitation events, particularly in tropical and high-latitude
- ✓ Reduced rainfall over continental interiors during summer

Storms

- ✓ Mid-latitude storm tracks are projected to shift toward the poles, with increased intensity in some areas but reduced frequency.
- ✓ Tropical storms and hurricanes are likely to become more intense

Temperature

- ✓ The average surface temperature of the Earth is likely to increase by 3.2 to 7.2°F (1.8-4.0°C) by the end of the 21st century.
- Sea Level

Historic Global Temperature Variation

Source: Petit, J.R., et al., 2001, Vostok Ice Core Data for 420,000 Years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA

Natural Factors Affecting Global Temperatures

Variations in Earth Orbit/Rotation

Solar Activity

- Volcanoes
- Circulation Patterns
- Greenhouse Gases

Earth Orbit/Rotation

- Astronomical factors affecting incoming solar radiation explain 85% of temperature change
 - ✓ Eccentricity ~ 50%
 - 3% Change in Orbit
 - 100-400,000 years
 - ✓ Tilt ~ 25%
 - 3° Change in Axis
 - 41,000 years
 - ✓ Precession ~ 10%
 - Direction of tilt
 - 19-24,000 years

Source: Hays et.al., Science, December 1976

Sunspot Activity

- 11 year & 90 year cycles
- Varies solar input by ~0.1%
- Maunder Minimum 1645 1715 "Little Ice Age"

Volcanoes

Ash Emissions

- ✓ Stay suspended ~ 6 months
- ✓ Reflect solar radiation *Cooling*

CO2 Emissions

- ✓ Annual average 200 million tons
- ✓ Greenhouse Gas Warming

- ✓ Combines with water vapor to form clouds of sulfuric acid
- ✓ Persist in stratosphere ~ 3 years
- ✓ Reflect solar radiation Cooling

Net Effect

✓ Recorded global temperature changes of -0.5 to -3°C (-1 to -5.5°F)

Ocean Circulation Patterns

- ModeratesEarth's climate
- Breakdown of system could be factor in reaching "tipping point"

Source: WHOI / Gagosin

Greenhouse Gases (GHG)

- Called GHG because they allow the shortwave energy (sunlight) to reach earth and then trap the longwave energy (heat) radiating from the surface.
- Natural: Water Vapor, CO2, CH4, N2O
- Manmade: CFCs, HFCs, PFCs
- Historic CO2: 180-300 ppmv
- Without GHG the Earth would be 33°C (60°F) cooler

Feedbacks

- Feedbacks can increase or decrease global warming
- Positive Feedback: shrinking ice sheets would decrease surface reflection (albedo), increasing solar energy absorption, increasing temperatures and accelerating ice melt
- Negative Feedback: warming would increase evaporation which would increase cloud cover, the additional clouds would reflect more solar energy, thus decreasing temperatures.

Global Surface Temperature

Source: National Research Council

Future Emissions and Global Temperature

Human activity emits 24 billion tons/year of CO2 or about 150 times as much as volcanic activity

Current CO2 level 387 ppmv (October, 2010)

Source: IPCC, EPA, NOAA

From The Sun to the Seas

Global Sea Level - Past 20,000 Years

Past 20,000 years

120 m or

400 feet

Source: Fleming et al. 1998, Fleming 2000, & Milne et al. 2005

Global Sea Level - Past 7,000 Years

Past 7,000 years 3.5 m or 11.5 feet

Annual Rise
0.5 mm/yr

Source: Fleming et al. 1998, Fleming 2000, & Milne et al. 2005

Global Sea Level - Past 100 Years

Past 100 years17 cm or7 inches

Annual Rise
1.7 mm/yr

Source: Bruce C. Douglas (1997). "Global Sea Rise: A Redetermination". *Surveys in Geophysics* **18**: 279-292

Factors of Sea Level Change

Thermodynamics

- Historic global temperature variation between ice ages is
 10-13°C (18-23°F)
- For every 1°C ocean water is warmed sea level would rise
 70 cm (28 in)
- A 12 °C temperature change would equal sea level change of
 8.4 m (27 ft)

Glaciers

- 20,000 years ago, at the peak of the last ice age glaciers covered:
 - ~ 8 % of Earth's surface
 - ~ 25 % of Earth's land area

- ~ 3.1 % of Earth's surface,
- ~ 10.7 % of Earth's land area

Glaciers - How Much | s Left?

- Greenland Ice Sheet
 - ✓ 6.5 meters of Global SLR
- Western Antarctic Ice Sheet
 - ✓ 8 meters of Global SLR
- Eastern Antarctic Ice Sheet
 - √ 65 meters of Global SLR
- Other Glaciers and Ice Fields
 - ✓ 0.5 meters of Global SLR

Local Sea Level Rise (Change)

Local Sea Level change rates can vary throughout the world

Reasons for Changes in Local Sea Level

Tectonic Activity

- ✓ Tectonic plate movement
- ✓ Interglacial Rebound

Surface Subsidence

- ✓ Water Withdrawal
- ✓ Oil and Gas Withdrawal

Other Factors

✓ Compaction of Sediments

Delaware Sea Level Trends

Global SLR 1.7 mm/yr

DE-SLR 3.4 mm/yr

It's Not Just Sea Level Rise

If we plan for Sea Level
 Rise we will inherently
 increase protection from
 Coastal Storms

✓ Coastal Storms have occurred and will continue to occur

Delaware Coastal Storms

- '62 Storm
 - Lewes
 - ✓ 4.5 ft above MHHW
- Mothers Day Storm
 2008 Bowers Beach
 ✓ 4 ft above MHHW
- Veterans Day Storm
 2009 Lewes
 ✓ 3 ft above MHHW

Summary

- Climate Change/Sea Level Change is an ongoing process
- The Earth's Climate is a delicate balance
- There are many variables involved in predicting climate change
- We must plan for increased sea level rise using the best available knowledge

Questions

